A Differentiated Anonymity Algorithm for Social Network Privacy Preservation
نویسندگان
چکیده
Devising methods to publish social network data in a form that affords utility without compromising privacy remains a longstanding challenge, while many existing methods based on k-anonymity algorithms on social networks may result in nontrivial utility loss without analyzing the social network topological structure and without considering the attributes of sparse distribution. Toward this objective, we explore the impact of the attributes of sparse distribution on data utility. Firstly, we propose a new utility metric that emphasizes network structure distortion and attribute value loss. Furthermore, we design and implement a differentiated k-anonymity l-diversity social network anonymity algorithm, which seeks to protect users’ privacy in social networks and increase the usability of the published anonymized data. Its key idea is that it divides a node into two child nodes and only anonymizes sensitive values to satisfy anonymity requirements. The evaluation results show that our method can effectively improve the data utility as compared to generalized anonymizing algorithms.
منابع مشابه
A Survey of Algorithms for Privacy- Preservation of Graphs and Social Networks
Social networks have received dramatic interest in research and development. In this chapter, we survey the very recent research development on privacy-preserving publishing of graphs and social network data. We categorize the state-of-the-art anonymization methods on simple graphs in three main categories: K-anonymity based privacy preservation via edge modification, probabilistic privacy pres...
متن کاملMining Social Media-Utility Based Privacy Preservation
Online social networks and publication of social network data has led to the risk of leakage of confidential information of individuals. This requires the preservation of privacy before such network data is published by service providers. Privacy in online social networks data has been of utmost concern in recent years. Hence, the research in this field is still in its early years. Several publ...
متن کاملPrivacy Preservation in Social Networks with Sensitive Edge Weights
With the development of emerging social networks, such as Facebook and MySpace, security and privacy threats arising from social network analysis bring a risk of disclosure of confidential knowledge when the social network data is shared or made public. In addition to the current social network anonymity de-identification techniques, we study a situation, such as in a business transaction netwo...
متن کاملPrivacy Preserving in Social Networks Against Sensitive Edge Disclosure
With the development of emerging social networks, such as Facebook and MySpace, security and privacy threats arising from social network analysis bring a risk of disclosure of confidential knowledge when the social network data is shared or made public. In addition to the current social network anonymity de-identification techniques, we study a situation, such as in business transaction network...
متن کاملPrivacy Preservation of Affinities in Social Networks
Beyond the ongoing privacy preserving social network studies which mainly focus on node de-identification and link protection, this paper is written with the intention of preserving the privacy of link's affinities, or weights, in a finite and directed social network. To protect the weight privacy of edges, we define a privacy measurement, k-anonymity, over individual weighted edges. It is cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithms
دوره 9 شماره
صفحات -
تاریخ انتشار 2016